
Identity Management Basics

Part 1 of Identity Management with Progress OpenEdge

Peter Judge

OpenEdge Development

pjudge@progress.com

© 2013 Progress Software Corporation. All rights reserved. 2

What Is Identity Management?

 Identity management is all about trust relationships

 It’s about protecting your business data

 You make security decisions on behalf of your customers …

understand the maximum loss they might suffer

© 2013 Progress Software Corporation. All rights reserved. 3

This Is Nothing New

 Forces aligned against you are more prevalent, and they have

more, and more sophisticated weapons

 And you’ve given people a door and invitation via the internet

 So now the things you used to do are no longer adequate

© 2013 Progress Software Corporation. All rights reserved. 4

What Is Identity Management?

It’s about protecting your business data by

 Controlling and verifying who accesses your data AUTHENTICATION

 Controlling what they can do with your data Authorization

 Reviewing what they did with your data Auditing

 Maintaining information about your users Administration

© 2013 Progress Software Corporation. All rights reserved. 5

Authentication

 Identifies a user, using factors

• Something the user knows (e.g. password)

• Something the user has (e.g. security token)

• Something of the user (e.g. biometrics)

 Verify that users are who they say they are

 We need to be able to trust this fact, as do others

© 2013 Progress Software Corporation. All rights reserved. 6

Authorization and Auditing

 Authorization

• What services can the user access?

• What data can the user see and/or modify?

– Multi-tenancy

– Record-level, field-level

 Auditing

• Verifiable trace of a user’s actions

© 2013 Progress Software Corporation. All rights reserved. 7

Me

Getting a Passport

1
Application

Forms

3 Passport

2
Passport Issuing

Authority

My Permanent

Record

© 2013 Progress Software Corporation. All rights reserved. 8

Using a Passport

Passport

3 Conference

1 Immigration

2
Visa Checks

Entry Stamps
Me

© 2013 Progress Software Corporation. All rights reserved. 9

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

© 2013 Progress Software Corporation. All rights reserved. 10

What Is a Security Token?

 A transportable block of data that can be used as proof of user

identity by any systems or applications that have a trust

relationship with the originator of the security token

• Exists for same reason passports do: so that a gatekeeper doesn’t

have to ask you for everything every time you want to pass

 Enables Single Sign On (SSO)

• Authenticate once and allow access many times across (ABL)

processes

 Secure, time sensitive and data-integrity protected

© 2013 Progress Software Corporation. All rights reserved. 11

The ABL CLIENT-PRINCIPAL

 CLIENT-PRINCIPAL =

ABL security token

 Sets current identity in any

connected db or AVM session

 AVM creates if not created

explicitly

 Manage a user’s login session

CREATE CLIENT-PRINCIPAL hCP.
hCP:INITIALIZE(<args>)

SECURITY-POLICY:SET-CLIENT(hCP).
SET-DB-CLIENT(<dbname>, hCP).

SETUSERID(<userid>, <pass>, <dbname>).
cmd> $PROEXE –U <userid> -P <pass>

hCP = SECURITY-POLICY:GET-CLIENT().
rCP = hCP:EXPORT-PRINCIPAL.
hCP:LOGOUT().

10.1A+

© 2013 Progress Software Corporation. All rights reserved. 12

What Are Domains?

 A group of users with a common set of

• Roles and responsibilities

• Level of security

• Data access privileges

 Configured in db meta-schema

_sec-authentication-domain

 _Domain-name
 _Domain-type
 _Domain-description
 _Domain-access-code
 _Domain-runtime-options
 _Tenant-name
 _Domain-enabled

© 2013 Progress Software Corporation. All rights reserved. 13

Authentication Systems (aka Plug-ins)

 Validates requesting entity’s claims

• Full user login (i.e. user authentication), or

• Single Sign-On (SSO)

 Specifies actual means of performing

authentication

• ABL callbacks available for user-defined

systems

 Single authentication system can support

multiple domains

• One domain has one authentication

system

_sec-authentication-system

 _Domain-type
 _Domain-type-description
 _PAM-plug-in
 _PAM-callback-procedure

11.1+

© 2013 Progress Software Corporation. All rights reserved. 14

User Credentials Example Schema

ADD TABLE "ApplicationUser"
 AREA "Data"
 DESCRIPTION "The application's user table. Contains login names, passwords and
mappings to login domains."
 DUMP-NAME "applicationuser"

ADD FIELD "LoginName" AS character
/* Domain necessary for re-use */
ADD FIELD "LoginDomain" AS character
ADD FIELD "Password" AS character
ADD FIELD "LastLoginDate" AS datetime-tz
/* Last login IP address / host */
ADD FIELD "LastLoginLocation" AS character

ADD INDEX "Login" ON "ApplicationUser"
 AREA "Indexes"
 UNIQUE
 INDEX-FIELD "LoginName" ASCENDING
 INDEX-FIELD "LoginDomain" ASCENDING

© 2013 Progress Software Corporation. All rights reserved. 15

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

© 2013 Progress Software Corporation. All rights reserved. 16

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

© 2013 Progress Software Corporation. All rights reserved. 17

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

© 2013 Progress Software Corporation. All rights reserved. 18

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

/* save token
 in local
 session */

3

© 2013 Progress Software Corporation. All rights reserved. 19

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

/* save token
 in local
 session */

3

© 2013 Progress Software Corporation. All rights reserved. 20

Managing Security Context: Server

11.0+

UI Client AppServer

1 Login

Data

© 2013 Progress Software Corporation. All rights reserved. 21

Managing Security Context: Server

11.0+

UI Client AppServer

Login

Data

2

© 2013 Progress Software Corporation. All rights reserved. 22

Managing Security Context: Server

UI Client AppServer

Login

Data 3

11.0+

© 2013 Progress Software Corporation. All rights reserved. 23

Managing Security Context: Server

UI Client AppServer

Login

Data

4

11.0+

© 2013 Progress Software Corporation. All rights reserved. 24

Managing Security Context: Server

UI Client AppServer

Login

Data 5

11.0+

© 2013 Progress Software Corporation. All rights reserved. 25

Managing Security Context: Client

11.0+

UI Client AppServer

1 Login

Data

© 2013 Progress Software Corporation. All rights reserved. 26

Managing Security Context: Client

11.0+

UI Client AppServer

Login

Data

2

© 2013 Progress Software Corporation. All rights reserved. 27

Managing Security Context: Client

11.0+

UI Client AppServer

Login

Data

3

© 2013 Progress Software Corporation. All rights reserved. 28

Managing Security Context: Client

11.0+

UI Client AppServer

Login

Data 4

© 2013 Progress Software Corporation. All rights reserved. 29

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

/* save token
 in local
 session */

3

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

© 2013 Progress Software Corporation. All rights reserved. 30

Desktop.MainForm.cls

method public logical LoginUser(
 input pcUserName as char,
 input pcDomain as char,
 input pcPassword as char):

 run Security/Login.p on hAppServer (
 pcUserName, pcDomain, pcPassword,
 output cUserContextId).
 if cUserContextId eq '' then return false.

 /* set the CCID on the business logic server so that it's
 transported with every request. */
 hAppServer:request-info:ClientContextId = cUserContextId.

 return true.
end method.

© 2013 Progress Software Corporation. All rights reserved. 31

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

/* save token
 in local
 session */

3

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

© 2013 Progress Software Corporation. All rights reserved. 32

Security/Login.p

define input parameter pcUser as character no-undo.
define input parameter pcDomain as character no-undo.
define input parameter pcPassword as character no-undo.
define output parameter pcToken as character no-undo.

pcToken = Security.SecurityTokenService:Instance
 :LoginUser(pcUser, pcDomain, pcPassword).

© 2013 Progress Software Corporation. All rights reserved. 33

method public char LoginUser(input pcUserName as char,
 input pcUserDomain as char,
 input pcPassword as char):
 define variable hClientPrincipal as handle no-undo.

 create client-principal hClientPrincipal.
 hClientPrincipal:initialize(
 substitute('&1@&2', pcUserName, pcUserDomain),
 ?, /* unique session id */
 add-interval(now, 8, 'hours'), /* login expiration */
 pcPassword).

 /* passes authentication work off to authentication system */
 security-policy:set-client(hClientPrincipal).

 /* writes security context into DB */
 WriteClientPrincipalToStore(hClientPrincipal).

 /* return character value */
 return hClientPrincipal:session-id.
end method.

Security.SecurityTokenService.cls

© 2013 Progress Software Corporation. All rights reserved. 34

method public char LoginUser(input pcUserName as char,
 input pcUserDomain as char,
 input pcPassword as char):
 define variable hClientPrincipal as handle no-undo.

 create client-principal hClientPrincipal.
 hClientPrincipal:initialize(
 substitute('&1@&2', pcUserName, pcUserDomain),
 ?, /* unique session id */
 add-interval(now, 8, 'hours'), /* login expiration */
 pcPassword).

 /* passes authentication work off to authentication system */
 security-policy:set-client(hClientPrincipal).

 /* writes security context into DB */
 WriteClientPrincipalToStore(hClientPrincipal).

 /* return character value */
 return hClientPrincipal:session-id.
end method.

Security.SecurityTokenService.cls

© 2013 Progress Software Corporation. All rights reserved. 35

create _sec-authentication-system.
_Domain-type = 'TABLE-ApplicationUser'.
_Domain-type-description =
 'The ApplicationUser table serves as
 the authentication domain'.
_PAM-plug-in = true.

_PAM-callback-procedure =
 'Security/AppUserAuthenticate.p'.

_sec-authentication-system

© 2013 Progress Software Corporation. All rights reserved. 36

procedure AuthenticateUser:
 def input param phClientPrincipal as handle no-undo.
 def input param pcSystemOptions as character extent no-undo.
 def output param piPAMStatus as integer init ? no-undo.
 def output param pcErrorMsg as character no-undo.

 find ApplicationUser where
 ApplicationUser.LoginName eq phCP:user-id and
 ApplicationUser.LoginDomain eq phCP:domain-name
 no-lock no-error.

 if not available ApplicationUser then
 piPAMStatus = Progress.Lang.PAMStatus:UnknownUser.
 else
 if ApplicationUser.Password ne
 encode(phCP:primary-passphrase) then
 piPAMStatus = Progress.Lang.PAMStatus:AuthenticationFailed.
 else
 /* we're good to go */
 piPAMStatus = Progress.Lang.PAMStatus:Success.

 return.
end procedure.

Security/AppUserAuthenticate.p

© 2013 Progress Software Corporation. All rights reserved. 37

Security.SecurityTokenService.cls

method public char LoginUser(input pcUserName as char,
 input pcUserDomain as char,
 input pcPassword as char):
 define variable hClientPrincipal as handle no-undo.

 create client-principal hClientPrincipal.
 hClientPrincipal:initialize(
 substitute('&1@&2', pcUserName, pcUserDomain),
 ?, /* unique session id */
 add-interval(now, 8, 'hours'), /* login expiration */
 pcPassword).

 /* passes authentication work off to authentication system */
 security-policy:set-client(hClientPrincipal).

 /* writes security context into DB */
 WriteClientPrincipalToStore(hClientPrincipal).

 /* return character value */
 return hClientPrincipal:session-id.
end method.

© 2013 Progress Software Corporation. All rights reserved. 38

Security.SecurityTokenService.cls

method protected void WriteClientPrincipalToStore(
 input phClientPrincipal as handle):
 define buffer lbSecurityContext for SecurityContext.

 find lbSecurityContext where
 lbSecurityContext.SessionId eq phClientPrincipal:session-id
 exclusive-lock no-wait no-error.
 if not available lbSecurityContext then
 do:
 create lbSecurityContext.
 lbSecurityContext.SessionId = phClientPrincipal:session-id.
 end.
 lbSecurityContext.ClientPrincipal =
 phClientPrincipal:export-principal().
 lbSecurityContext.LastAccess = now.
end method.

© 2013 Progress Software Corporation. All rights reserved. 39

Security.SecurityTokenService.cls

method public char LoginUser(input pcUserName as char,
 input pcUserDomain as char,
 input pcPassword as char):
 define variable hClientPrincipal as handle no-undo.

 create client-principal hClientPrincipal.
 hClientPrincipal:initialize(
 substitute('&1@&2', pcUserName, pcUserDomain),
 ?, /* unique session id */
 add-interval(now, 8, 'hours'), /* login expiration */
 pcPassword).

 /* passes authentication work off to authentication system */
 security-policy:set-client(hClientPrincipal).

 /* writes security context into DB */
 WriteClientPrincipalToStore(hClientPrincipal).

 /* return character value */
 return hClientPrincipal:session-id.
end method.

© 2013 Progress Software Corporation. All rights reserved. 40

User

Interface

Application Flow: Login

Claims / Assertions

Security Token

Security Token Service

Authentication Systems

and Domains

RUN login.p ON SERVER hAppServer
 (cUser, cDomain, cPassword,
 OUTPUT lcToken)

1

login.p

INPUT PARAM pcUser
INPUT PARAM pcDomain
INPUT PARAM pcPword
OUTPUT PARAM pcToken

pcToken = STS:Login
(pcUser, pcDomain, pcPword). 2

/* save token
 in local
 session */

3

© 2013 Progress Software Corporation. All rights reserved. 41

Desktop.MainForm.cls

method public logical LoginUser(
 input pcUserName as char,
 input pcDomain as char,
 input pcPassword as char):

 run Security/Login.p on hAppServer (
 pcUserName, pcDomain, pcPassword,
 output cUserContextId).
 if cUserContextId eq '' then return false.

 /* set the CCID on the business logic server so that it's
 transported with every request. */
 hAppServer:request-info:ClientContextId = cUserContextId.

 return true.
end method.

© 2013 Progress Software Corporation. All rights reserved. 42

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

© 2013 Progress Software Corporation. All rights reserved. 43

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

© 2013 Progress Software Corporation. All rights reserved. 44

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

© 2013 Progress Software Corporation. All rights reserved. 45

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

© 2013 Progress Software Corporation. All rights reserved. 46

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

© 2013 Progress Software Corporation. All rights reserved. 47

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4 deactivate.p
security-policy:set-client

(<<agent>>)

5

© 2013 Progress Software Corporation. All rights reserved. 48

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4 deactivate.p
security-policy:set-client

(<<agent>>)

5

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

© 2013 Progress Software Corporation. All rights reserved. 49

Desktop.MainForm.cls

method protected void RefreshCustomerList():
 define variable hAppServer as handle no-undo.

 run BusinessLogic/GetCustomerList.p on hAppServer
 (output dataset dsCustomerOrder).

 open query qryCustomer preselect
 each ttCustomer by ttCustomer.CustNum.

 bsCustomer:Handle = query qryCustomer:handle.

 query qryCustomer:reposition-to-row(1).
end method.

© 2013 Progress Software Corporation. All rights reserved. 50

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4 deactivate.p
security-policy:set-client

(<<agent>>)

5

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

© 2013 Progress Software Corporation. All rights reserved. 51

Security/Activate.p

hClientPrincipal = Security.SecurityTokenService:Instance:
 GetClientPrincipal(
 session:current-request-info:ClientContextId).

/* authenticate client-principal */
security-policy:set-client(hClientPrincipal).

© 2013 Progress Software Corporation. All rights reserved. 52

Security.SecurityTokenService.cls

method public handle GetClientPrincipal(input pcContextId as char):
 define variable hClientPrincipal as handle no-undo.
 define variable rClientPrincipal as raw no-undo.
 define buffer lbSecurityContext for SecurityContext.

 find lbSecurityContext where lbSecurityContext.SessionId eq
pcContextId
 exclusive-lock no-wait no-error.
 if not available lbSecurityContext then
 undo, throw new AppError('Context does not exist').
 assign rClientPrincipal = lbSecurityContext.ClientPrincipal
 lbSecurityContext.LastAccess = now.

 create client-principal hClientPrincipal.
 hClientPrincipal:import-principal(rClientPrincipal).

 return hClientPrincipal.
end method.

© 2013 Progress Software Corporation. All rights reserved. 53

Security/Activate.p

hClientPrincipal = Security.SecurityTokenService:Instance:
 GetClientPrincipal(
 session:current-request-info:ClientContextId).

/* authenticate client-principal */
security-policy:set-client(hClientPrincipal).

© 2013 Progress Software Corporation. All rights reserved. 54

create _sec-authentication-system.
_Domain-type = 'TABLE-ApplicationUser'.
_Domain-type-description =
 'The ApplicationUser table serves as
 the authentication domain'.
_PAM-plug-in = true.

_PAM-callback-procedure =
 'Security/AppUserAuthenticate.p'.

_sec-authentication-system

© 2013 Progress Software Corporation. All rights reserved. 55

procedure AfterSetIdentity:
 def input param phClientPrincipal as handle no-undo.
 def input param pcSystemOptions as character extent no-undo.

 /* At this point the CLIENT-PRINCIPAL is sealed and the
 user authenticated */

 /* Load user/application (as opposed to security)
 context here */

 return.
end procedure.

Security/AppUserAuthenticate.p

© 2013 Progress Software Corporation. All rights reserved. 56

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

 deactivate.p
security-policy:set-client

(<<agent>>)

5

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4

© 2013 Progress Software Corporation. All rights reserved. 57

{BusinessLogic/dsCustomerOrder.i}

define output parameter dataset for dsCustomerOrder.

define variable oBusinessEntity as CustomerOrderBE no-undo.

oBusinessEntity = new CustomerOrderBE().

oBusinessEntity:GetCustomers(output dataset dsCustomerOrder).

/* eof */

BusinessLogic/GetCustomerList.p

© 2013 Progress Software Corporation. All rights reserved. 58

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4 deactivate.p
security-policy:set-client

(<<agent>>)

5

© 2013 Progress Software Corporation. All rights reserved. 59

Security/Deactivate.p

define variable hClientPrincipal as handle no-undo.

hClientPrincipal = dynamic-function(
 'GetAgentClientPrincipal' in hStartupProc)

security-policy:set-client(hClientPrincipal).

/* eof */

© 2013 Progress Software Corporation. All rights reserved. 60

Desktop.MainForm.cls

method protected void RefreshCustomerList():
 define variable hAppServer as handle no-undo.

 run BusinessLogic/GetCustomerList.p on hAppServer
 (output dataset dsCustomerOrder).

 open query qryCustomer preselect
 each ttCustomer by ttCustomer.CustNum.

 bsCustomer:Handle = query qryCustomer:handle.

 query qryCustomer:reposition-to-row(1).
end method.

© 2013 Progress Software Corporation. All rights reserved. 61

Application Flow: Business Logic

Security Token

Application Business

Logic

Authentication

Authorization

Auditing

User

Interface

 activate.p

STS:ValidateToken
 (INPUT cToken).

security-policy:set-client

(<<user>>)

AuthoriseService
 ("getcustomerlist.p").

2

3

RUN getcustomerlist.p ON SERVER hAppServer
 (OUTPUT DATASET dsCustomer) 1

getcustomerlist.p

OUTPUT PARAM DATASET dsCustomer

4 deactivate.p
security-policy:set-client

(<<agent>>)

5

startup.p

 security-policy:load-domains()

 STS:Login('agent', 'system').

 security-policy:set-client

(<<agent>>).

0

© 2013 Progress Software Corporation. All rights reserved. 62

Security/Startup.p

define input parameter pcStartupData as character no-undo.

define variable cAgentSessionId as character no-undo.
define variable hClientPrincipal as handle no-undo.

/* load domains */
security-policy:load-domains('sports2000').

/* immediately set session user to a low-privilege agent user */
cAgentSessionId = Security.SecurityTokenService:Instance

 :LoginUser('agent', 'system','oech1::3c373b2a372c3d').

hClientPrincipal = Security.SecurityTokenService:Instance
 :GetClientPrincipal(cAgentSessionId).

security-policy:set-client (hClientPrincipal).

function GetAgentSessionId returns character ():
 return cAgentSessionId.
end function.

function GetAgentClientPrincipal returns handle():
 return hClientPrincipal.
end function.

© 2013 Progress Software Corporation. All rights reserved. 63

Security/Shutdown.p

Security.SecurityTokenService:Instance
 :LogoutUser(
 dynamic-function('GetAgentSessionId' in hStartupProc)).

/* eof */

© 2013 Progress Software Corporation. All rights reserved. 64

Progress OpenEdge Provides …

 A security token

• CLIENT-PRINCIPAL available in multiple clients

• Automatic creation in some cases

• Available in activate procedure

 Configurable, plug-in architecture (PAM modules)

• Guaranteed, consistent, trusted code-paths

© 2013 Progress Software Corporation. All rights reserved. 65

Progress OpenEdge Does Not …

 Have a prescriptive model

 Manage security context for an entire application

 Automatically import external systems’ tokens

• For example, SAML for federated authentication

© 2013 Progress Software Corporation. All rights reserved. 66

Coming Soon … {std/disclaimer.i}

 More authentication systems / PAM modules

• LDAP

• ActiveDirectory

 Upgraded security for _User

 OpenEdge realm for BPM & REST

 Progress.Security.Realm.IHybridRealm

© 2013 Progress Software Corporation. All rights reserved. 67

Summary

 Identity management is a process that helps protect your business

data

 Applications must have security designed in

• Delegation of responsibility

• Multiple layers

 OpenEdge provides components of identity management

• CLIENT-PRINCIPAL

• Authentication Systems

• Transportation of security token

© 2013 Progress Software Corporation. All rights reserved. 68

Extra Materials

 This session's slides to be posted on Progress Exchange site

• Supporting code at https://github.com/nwahmaet/IdM_Sample

 Other Exchange sessions

• Coding with Identity Management & Security (Part 2)
 Peter Judge, PSC

• Workshop: Progress OpenEdge Security
 Brian Bowman, Rob Marshall et al

• Transparent Data Encryption
 Doug Vanek

• Introduction to Multi-tenancy
 Gus Bjorklund

• Security and Session Management with Mobile Devices
 Mike Jacobs & Wayne Henshaw

 Image Credits:
Passport designed by Catia G, Time designed by wayne25uk, Database designed by Anton Outkine,
Code designed by Nikhil Dev, Imposter designed by Luis Prado, User designed by T. Weber,
Fingerprint designed by Andrew Forrester, Document designed by Samuel Green, Certificate designed
by VuWorks, Network designed by Ben Rex Furneaux, Beer designed by Leigh Scholten; all from The
Noun Project

https://github.com/nwahmaet/IdM_Sample
https://github.com/nwahmaet/IdM_Sample

